3.7 \(\int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx\)

Optimal. Leaf size=56 \[ \frac{a (A+B) \tan (c+d x)}{d}+\frac{a (A+2 B) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{a A \tan (c+d x) \sec (c+d x)}{2 d} \]

[Out]

(a*(A + 2*B)*ArcTanh[Sin[c + d*x]])/(2*d) + (a*(A + B)*Tan[c + d*x])/d + (a*A*Sec[c + d*x]*Tan[c + d*x])/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.136926, antiderivative size = 56, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.207, Rules used = {2968, 3021, 2748, 3767, 8, 3770} \[ \frac{a (A+B) \tan (c+d x)}{d}+\frac{a (A+2 B) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{a A \tan (c+d x) \sec (c+d x)}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])*(A + B*Cos[c + d*x])*Sec[c + d*x]^3,x]

[Out]

(a*(A + 2*B)*ArcTanh[Sin[c + d*x]])/(2*d) + (a*(A + B)*Tan[c + d*x])/d + (a*A*Sec[c + d*x]*Tan[c + d*x])/(2*d)

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3021

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m +
 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*
C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e,
 f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx &=\int \left (a A+(a A+a B) \cos (c+d x)+a B \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx\\ &=\frac{a A \sec (c+d x) \tan (c+d x)}{2 d}+\frac{1}{2} \int (2 a (A+B)+a (A+2 B) \cos (c+d x)) \sec ^2(c+d x) \, dx\\ &=\frac{a A \sec (c+d x) \tan (c+d x)}{2 d}+(a (A+B)) \int \sec ^2(c+d x) \, dx+\frac{1}{2} (a (A+2 B)) \int \sec (c+d x) \, dx\\ &=\frac{a (A+2 B) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{a A \sec (c+d x) \tan (c+d x)}{2 d}-\frac{(a (A+B)) \operatorname{Subst}(\int 1 \, dx,x,-\tan (c+d x))}{d}\\ &=\frac{a (A+2 B) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{a (A+B) \tan (c+d x)}{d}+\frac{a A \sec (c+d x) \tan (c+d x)}{2 d}\\ \end{align*}

Mathematica [A]  time = 0.0267637, size = 75, normalized size = 1.34 \[ \frac{a A \tan (c+d x)}{d}+\frac{a A \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{a A \tan (c+d x) \sec (c+d x)}{2 d}+\frac{a B \tan (c+d x)}{d}+\frac{a B \tanh ^{-1}(\sin (c+d x))}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])*(A + B*Cos[c + d*x])*Sec[c + d*x]^3,x]

[Out]

(a*A*ArcTanh[Sin[c + d*x]])/(2*d) + (a*B*ArcTanh[Sin[c + d*x]])/d + (a*A*Tan[c + d*x])/d + (a*B*Tan[c + d*x])/
d + (a*A*Sec[c + d*x]*Tan[c + d*x])/(2*d)

________________________________________________________________________________________

Maple [A]  time = 0.093, size = 86, normalized size = 1.5 \begin{align*}{\frac{aA\tan \left ( dx+c \right ) }{d}}+{\frac{aB\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{d}}+{\frac{aA\sec \left ( dx+c \right ) \tan \left ( dx+c \right ) }{2\,d}}+{\frac{aA\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{2\,d}}+{\frac{aB\tan \left ( dx+c \right ) }{d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)*(A+B*cos(d*x+c))*sec(d*x+c)^3,x)

[Out]

a*A*tan(d*x+c)/d+1/d*a*B*ln(sec(d*x+c)+tan(d*x+c))+1/2*a*A*sec(d*x+c)*tan(d*x+c)/d+1/2/d*a*A*ln(sec(d*x+c)+tan
(d*x+c))+1/d*a*B*tan(d*x+c)

________________________________________________________________________________________

Maxima [A]  time = 0.990203, size = 128, normalized size = 2.29 \begin{align*} -\frac{A a{\left (\frac{2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 2 \, B a{\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 4 \, A a \tan \left (d x + c\right ) - 4 \, B a \tan \left (d x + c\right )}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorithm="maxima")

[Out]

-1/4*(A*a*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) - 2*B*a*(log(s
in(d*x + c) + 1) - log(sin(d*x + c) - 1)) - 4*A*a*tan(d*x + c) - 4*B*a*tan(d*x + c))/d

________________________________________________________________________________________

Fricas [A]  time = 1.40884, size = 239, normalized size = 4.27 \begin{align*} \frac{{\left (A + 2 \, B\right )} a \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) -{\left (A + 2 \, B\right )} a \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \,{\left (2 \,{\left (A + B\right )} a \cos \left (d x + c\right ) + A a\right )} \sin \left (d x + c\right )}{4 \, d \cos \left (d x + c\right )^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorithm="fricas")

[Out]

1/4*((A + 2*B)*a*cos(d*x + c)^2*log(sin(d*x + c) + 1) - (A + 2*B)*a*cos(d*x + c)^2*log(-sin(d*x + c) + 1) + 2*
(2*(A + B)*a*cos(d*x + c) + A*a)*sin(d*x + c))/(d*cos(d*x + c)^2)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.24106, size = 167, normalized size = 2.98 \begin{align*} \frac{{\left (A a + 2 \, B a\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right ) -{\left (A a + 2 \, B a\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right ) - \frac{2 \,{\left (A a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 2 \, B a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 3 \, A a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 2 \, B a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}^{2}}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorithm="giac")

[Out]

1/2*((A*a + 2*B*a)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - (A*a + 2*B*a)*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(
A*a*tan(1/2*d*x + 1/2*c)^3 + 2*B*a*tan(1/2*d*x + 1/2*c)^3 - 3*A*a*tan(1/2*d*x + 1/2*c) - 2*B*a*tan(1/2*d*x + 1
/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^2)/d